
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Kobe Institute of Computing, Syllabus 2020

1. Course Code

2207

2. Course Title

Fundamentals of Software Engineering

3. Teacher

ITO, Mamoru

4. Term

Fall 2

5. Course Requirements (Courses / Knowledge prerequisite for this course)

None

6. Course Overview and Objectives

Basics of the software development processes
Fundamentals of the project management processes
Basics of requirements analysis
Software design basics
Software testing basics
Software quality fundamentals
Object oriented concepts
Basics of modeling using Unified Modeling Language (UML)
Basics of modeling using Unified Modeling Language (UML)
Exercises in modeling with UML
Exercises in modeling with UML
Presentation of UML modeling exercise

Students learn basic knowledge of the development processes and techniques

(analysis, design, and verification) necessary for developing practical software

systems and products, as well as software project management techniques.

Through this course, students will understand the characteristics of software and

the social environment surrounding software and will be able to develop their

decision-making and behavioral skills to deal with various problems they will face in

software projects.

7. Course Outline
Principles of computer operation
Fundamentals of data structures and algorithms
Software engineering overview and ethics

Term-end exam (multiple-choice and open-book style)

8. Textbooks (Required Books for this course)

None

(1)

(2)
(3)

(4)

(5)
(6)
(7)
(8)

examination Quiz Reports Presentation Deliverables Other
〇 〇 〇 〇
〇 〇 〇 〇
〇 〇 〇 〇
〇 〇 〇
〇 〇 〇

30 30 15 10 15

Basic academic skills (1), (2)
Specialized knowledge and literacy (1), (2)

High level ICT

skills

(3)
(3), (4)

(1)
 Professional ethics (3), (4), (5)

Hypothesis testing
Practice

Ability to continually improve own strengths (2)
Problem setting (3), (4)
Hypothesis planning (3), (4)

11. Correspondence relationship between Educational goals and Course goals

Educational goals of the school Course Goals

9. Reference Books (optional books for further study)

R. S. Pressman, B. R. Maxim. Software Engineering: A Practitioner's Approach.

McGraw Hill Higher Education.

IEEE Computer Society. Guide to the Software Engineering Body of Knowledge.

IEEE Computer Society Press.

10. Course Goals (Attainment Targets)

Have a basic understanding of software development life cycle and process

models
Utilize basic techniques in software analysis and design
Acquire practical decision-making skills required for software project management

Deepen an understanding of social environments surrounding software

development
Analyze the ethical issues in software development

Ability to think through
Ability to work in a team

Allocation

Examination Multiple-choice exam is used to assess students' understanding

and application of the course goals. This is an open-book exam that

allows students to bring in their own materials and does not require

knowledge of the subject matter.

(6)

13. Evaluation Criteria

12. Evaluation

Goals Evaluation method & point allocation

(1)
(2)
(3)
(4)
(5)

Human skill

 (Tankyu skill）

Ability to discover and

resolve the problem

in society

Fundamental

Competencies for

Working Persons

Ability to step forward

Quiz Multiple-choice quizzes are used to evaluate the students'

comprehension and application of the content in each class. As this

is an open-book test, no knowledge is required.

40%

1 All the time

2 All the time

3 Sometimes

4 Not at all

The Software runs on a computer. The basic knowledge on computers expands an

understanding of software development. We will learn how a computer works in this

lesson.

- Introduction

- Computer organization (CPU, memory, I / O, clock)

- Von Neumann architecture

- Memory hierarchy

- Program performance

Reports Evaluate in terms of the appropriateness of the description, the

structure of the report, the validity of the argument, and the

originality of the proposal.

Presentation Evaluate the content of the presentation in terms of its

purposefulness, the structure of the presentation, the relevance of

the argument, and the originality of the proposal.

Deliverables
Evaluate the diagrams and documents created in terms of

relevance, clarity, and objectivity.

Other

14. Active Learning

Lesson 1: Basic principles Lecture/Discussion 90 min

Hourly percentage of active learning within the whole class time

 Active learning such as problem solving assignment using the

knowledge and skills acquired in class.

Active learning such as group works and discussions.

Outcome presentations and feedbacks.

Students actively make decisions on how the class should be

conducted.

15. Notes

This course provides the course materials on Moodle.

16. Course plan

(Notice) This plan is tentative and might be changed at the time of delivery

A “Process” can be defined as a “set of interrelated or interacting activities, which

transforms inputs into outputs”. Good process is required to produce good outputs.

We will learn the overview of software life cycle process models and the meaning of

process improvement.

- Definition of software process

- Life cycle models

- Present situation and issues on software process

- Meaning of software improvement

Generally, software is developed by a project team. The project team should be

managed adequately. This lesson will clarify a project, project management, project

lifecycle, and project organizations.

- Definition of project and project management

- Project life cycle

- Relationship with organizations and stakeholders

- Trend in project management standards

Lesson 5: Project management processes Lecture/Discussion 90 min

The data structures and algorithms should be considered for us to design a

computer program. This lesson will provide students with the introduction of data

structures and algorithms.

- Address space and virtual memory

- Major data structures – array, list, stack, queue, and tree

- Major algorithms - sorting algorithms and search algorithms

- Computational complexity

The software grows increasingly important along with the popularization of

computers. We will discuss the reality surrounding software development after

understanding of the features of the software and learn the necessity of software

engineering.

- Features of software

- Importance of software

- Environment surrounding software development

- Role of software engineering and ethics

Lesson 2: Data structures and algorithms Lecture/Discussion 90 min

Lesson 3:Software engineering and ethics Lecture/Discussion 90 min

Lesson 4: Software development processes Lecture/Discussion 90 min

The role of software engineer is to realize the requirements of customers and users

by use of software. But their requirements are sometimes ambiguous and lack

consistency. We should acquire their requirements exhaustively and analyze them

systematically. We will marshal the concepts of requirements and flow of

requirement analysis.

- Difference between needs wants and demands

- Functional requirements and non-functional requirements

- Requirements analysis techniques

- Requirements modeling

Lesson 6: Requirements analysis Lecture/Discussion 90 min

The optimum design technique should be selected based on the target and

objectives of software development. This lesson introduces major software design

techniques such as structured design and object-oriented design.

- Architectural design

- Structured design

- Object-oriented design

Software testing is becoming important because defects in software have the

significant impact on the society. We will learn the positioning of software testing,

kinds of software testing, and testing techniques in this lesson.

- Necessity and limitation of software testing

- Flow of software development and testing phases

- White box test and black box test

- The major testing techniques

One of the objectives of software engineering is to develop high-quality software.

Management on software quality is more important than that of hardware quality

because software is invisible. We will understand the whole picture of software

quality and necessary activities to achieve the required quality in this lesson.

- Difference between quality and grade

- Software quality model

- Quantitative quality management

- Software design review

Lesson 7: Software design Lecture/Discussion 90 min

Lesson 8: Software testing Lecture/Discussion 90 min

Lesson 9: Software quality Lecture/Discussion 90 min

Object-oriented methodology is becoming popular in association with increasing in

size and complication of software. This methodology is used not only for

programming but also for requirements analysis and software design. This lesson

will focus on object-oriented analysis and design by the use of UML modeling.

- A brief history of object-oriented methodology

- Object-oriented analysis

- Modeling and UML diagrams

- Object-oriented design

UML is becoming commonly-used with object-oriented technology. UML stands for

Unified Modeling Language, which is a useful tool for analysis and design of

complex software systems. We will learn how to describe major diagrams.

- Overview

- Use Case Diagram

- Activity Diagram

- Class Diagram, Object Diagram

- Sequence Diagram

Term-end Examination

A multiple-choice exam is conducted to evaluate the level of understanding of each

student. Your answers to these questions will all be processed by computer.

- Multiple-choice exam

Lesson 10: Object-oriented methodology Lecture/Discussion 90 min

Lesson 11-12: Unified modeling language (UML) Lecture/Exercise 180 min

Lesson 13-14: Exercises in UML modeling Exercise: 180 min

Software analysis and design includes various activities from requirements analysis

to implementation, which holds extremely important position in software

developments. In the following three lessons, exercises in the analysis and design

of software systems are conducted through group work. After the exercises, each

group of the students makes a presentation on the results of group work.

- Exercises in structural and behavioral modeling

- Exercises in analysis and design of software

- Exercises in drawing UML diagrams

- Presentations

Lesson 15: Presentation Presentation 90 min

Each group conducts a presentation of the results of UML modeling.

- Presentation

Examination: 90 min

