
(1)

(2)
(3)

(4)

(5)
(6)

Fundamentals of Software Engineering

Basic academic skills
Course Goals

Acquire practical decision-making skills required for software project
management

Utilize basic techniques in software analysis and design

Software is playing an increasingly important role in the evolution of ICT systems.
However, developing software on time, on budget, and on target is very difficult.
Many software projects fail or end with challenges. This class provides a
comprehensive and interdisciplinary learning opportunity for software practitioners
to solve various problems in software projects and ensure their success.
6. Course Goals (Attainment Targets)

Have a basic understanding of software development life cycle and process
models

5. Course Overview and Objectives

Fall 2

ITO, Mamoru

(1), (2)
(1), (2)High level ICT

skills

7. Correspondence relationship between Educational goals and Course goals
Educational goals of the school

2207

2. Course Title

Kobe Institute of Computing, Syllabus 2019

1. Course Code

3. Teacher

None

None

8. Course Requirements (Courses / Knowledge prerequisite for this course)

Ability to work in a team (1), (2)
(3), (4)

9. Textbooks (Required Books for this course)

(3), (4), (5)

Specialized knowledge and literacy

(3), (4)
(3), (4)

(2)Ability to continually improve own strengths

Deepen an understanding of social environments surrounding software
development
Analyze the ethical issues in software development

4. Term

 Professional ethics

Hypothesis testing
Practice

Ability to discover and
resolve the problem
in society

Human skill
 (Tankyu skill）

Fundamental
Competencies for
Working Persons

Ability to step forward
Ability to think through

Problem setting
Hypothesis planning

(3)

examination Quiz Reports Presentation Deliverables Other
〇 〇 〇
〇 〇 〇
〇 〇 〇 〇
〇 〇 〇
〇 〇 〇

30 30 30 10

Lesson 1: Basic principles Lecture/Discussion 90 min

Lesson 2: Data structures and algorithms Lecture/Discussion 90 min

Goals Evaluation method & point allocation

10. Reference Books (optional books for further study)

11. Evaluation

R. S. Pressman, B. R. Maxim. Software Engineering: A Practitioner's Approach.
McGraw Hill Higher Education.
IEEE Computer Society. Guide to the Software Engineering Body of Knowledge.
IEEE Computer Society Press.

(5)
(6)

(2)
(3)
(4)

(1)

Allocation

13. Course plan

This course provides the course materials on Moodle.

12. Notes

The Software runs on a computer. The basic knowledge on computers expands an
understanding of software development. We will learn how a computer works in this
lesson.

- Introduction
- Computer organization (CPU, memory, I / O, clock)
- Von Neumann architecture
- Memory hierarchy
- Program performance

(Notice) This plan is tentative and might be changed at the time of delivery

The data structures and algorithms should be considered for us to design a
computer program. This lesson will provide students with the introduction of data
structures and algorithms.

- Address space and virtual memory
- Major data structures – array, list, stack, queue, and tree
- Major algorithms - sorting algorithms and search algorithms
- Computational complexity

Lesson 3:Software engineering and ethics Lecture/Discussion 90 min

Lesson 4: Software development processes Lecture/Discussion 90 min

Lesson 5: Project management processes Lecture/Discussion 90 min

A “Process” can be defined as a “set of interrelated or interacting activities, which
transforms inputs into outputs”. Good process is required to produce good outputs.
We will learn the overview of software life cycle process models and the meaning of
process improvement.

- Definition of software process
- Life cycle models
- Present situation and issues on software process
- Meaning of software improvement

Generally, software is developed by a project team. The project team should be
managed adequately. This lesson will clarify a project, project management, project
lifecycle, and project organizations.

- Definition of project and project management
- Project life cycle
- Relationship with organizations and stakeholders
- Trend in project management standards

The role of software engineer is to realize the requirements of customers and users
by use of software. But their requirements are sometimes ambiguous and lack
consistency. We should acquire their requirements exhaustively and analyze them
systematically. We will marshal the concepts of requirements and flow of
requirement analysis.

- Difference between needs wants and demands
- Functional requirements and non-functional requirements
- Requirements analysis techniques
- Requirements modeling

The software grows increasingly important along with the popularization of
computers. We will discuss the reality surrounding software development after
understanding of the features of the software and learn the necessity of software
engineering.

- Features of software
- Importance of software
- Environment surrounding software development
- Role of software engineering

Lesson 6: Requirements analysis Lecture/Discussion 90 min

Lesson 10: Object-oriented methodology Lecture/Discussion 90 min

Lesson 7: Software design Lecture/Discussion 90 min

Object-oriented methodology is becoming popular in association with increasing in
size and complication of software. This methodology is used not only for
programming but also for requirements analysis and software design. This lesson
will focus on object-oriented analysis and design by the use of UML modeling.

- A brief history of object-oriented methodology
- Object-oriented analysis
- Modeling and UML diagrams
- Object-oriented design

Software testing is becoming important because defects in software have the
significant impact on the society. We will learn the positioning of software testing,
kinds of software testing, and testing techniques in this lesson.

- Necessity and limitation of software testing
- Flow of software development and testing phases
- White box test and black box test
- The major testing techniques

The optimum design technique should be selected based on the target and
objectives of software development. This lesson introduces major software design
techniques such as structured design and object-oriented design.

- Architectural design
- Structured design
- Object-oriented design

One of the objectives of software engineering is to develop high-quality software.
Management on software quality is more important than that of hardware quality
because software is invisible. We will understand the whole picture of software
quality and necessary activities to achieve the required quality in this lesson.

- Difference between quality and grade
- Software quality model
- Quantitative quality management
- Software design review

Lesson 8: Software testing Lecture/Discussion 90 min

Lesson 9: Software quality Lecture/Discussion 90 min

Lesson 13-14: Exercises in UML modeling Exercise: 180 min

Lesson 11-12: Unified modeling language (UML) Lecture/Exercise 180 min

Examination: 90 min

Presentation 90 min

Each group conducts a presentation of the results of UML modeling.

- Presentation

UML is becoming commonly-used with object-oriented technology. UML stands for
Unified Modeling Language, which is a useful tool for analysis and design of
complex software systems. We will learn how to describe major diagrams.

- Overview
- Use Case Diagram
- Activity Diagram
- Class Diagram, Object Diagram
- Sequence Diagram

A multiple-choice exam is conducted to evaluate the level of understanding of each
student. Your answers to these questions will all be processed by computer.

- Multiple-choice exam

Lesson 15: Presentation

Software analysis and design includes various activities from requirements analysis
to implementation, which holds extremely important position in software
developments. In the following three lessons, exercises in the analysis and design
of software systems are conducted through group work. After the exercises, each
group of the students makes a presentation on the results of group work.

- Exercises in structural and behavioral modeling
- Exercises in analysis and design of software
- Exercises in drawing UML diagrams
- Presentations

Term-end Examination

